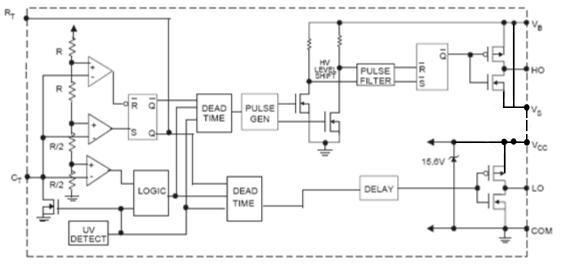


Application Note AN-1085_{revC}

IRS2153(1)D and IR2153(1)/IR2153(1)D Comparison

Table of Contents

Introduction	Page
Block Diagrams	. 2
IR2153(1)/IR2153(1)D vs. IRS2153(1)D Electrical Characteristics Differences	. 4
Conclusions	7


1. INTRODUCTION

The new IRS2153(1)D replaces the existing IR2153(1)/IR2153(1)D HVICs advantageously by saving the need for an external bootstrap diode. It is based on the same core design and is pin-to-pin compatible, allowing minimum changes to the previous design. This application note describes the differences between the existing IR2153(1)/IR2153(1)D IC family and the new IRS2153(1)D.

2. BLOCK DIAGRAMS

The IR2153(1)/IR2153(1)D is not a single IC, but consists of a family of ICs (Table I).

P/N	Deadtime (typ.)	Internal Bootstrap Diode	Package Type
IR2153PbF	1.2 µs	No	DIP8
IR2153SPbF	1.2 µs	No	SO8
IR21531PbF	0.6 µs	No	DIP8
IR21531SPbF	0.6 µs	No	SO8
IR2153DPbF	1.2 µs	Yes	DIP8
IR2153DSPbF	1.2 µs	Yes	SO8
IR21531DPbF	0.6 µs	Yes	DIP8
IR21531DSPbF	0.6 µs	Yes	SO8

The functional block diagrams of each IC (Figs. 1 and 2) are exactly the same except the internal bootstrap diode.

Figure 1: IR2153(1) Functional Block Diagram

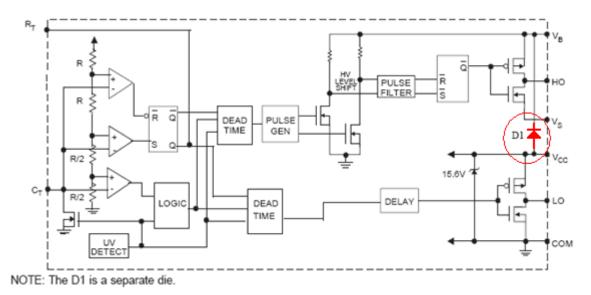


Figure 2: IR2153(1)D Functional Block Diagram

In the new IRS2153(1)D IC (Fig. 3), an internal FET now replaces the internal bootstrap diode, which was previously a separate die. IRS2153(1)D has the same functionality as IR2153(1)D and the need for an additional diode has been eliminated.

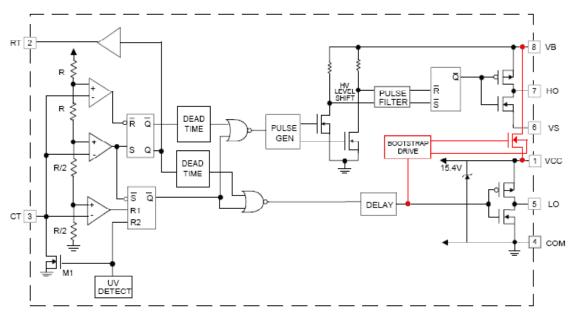


Figure 3: IRS2153(1)D Functional Block Diagram

<u>Consequently:</u> a customer using IR2153(1)/IR2153(1)D should take particular care of the bootstrap circuitry when switching to IRS2153(1)D.

3. IR2153(1)/IR2153(1)D vs. IRS2153(1)D ELECTRICAL CHARACTERISTICS DIFFERENCES

The following tables and comments highlight the differences between the IR2153(1)/IR2153(1)D and the new IRS2153(1)D:

	Parameter	IR2153(1)	/IR2153(1)D	IRS2	153(1)D	Unito
Symbol	Definition	min	max	min	max	Units
VB	High side floating supply voltage	-0.3	625	-0.3	625	
Vs	High side floating supply offset voltage	VB - 25	VB + 0.3	VB - 25	VB + 0.3	v
V _{HO}	High side floating output voltage	VS - 0.3	VB + 0.3	VS - 0.3	VB + 0.3	
V _{LO}	Low side output voltage	-0.3	VCC + 0.3	-0.3	VCC + 0.3	
I _{RT}	RT pin current	-5	5	-5	5	mA
V _{RT}	RT pin voltage	-0.3	VCC + 0.3	-0.3	VCC + 0.3	V
V _{CT}	CT pin voltage	-0.3	VCC + 0.3	-0.3	VCC + 0.3	v
lcc	Supply current (Note 1)		25		20	mA
IO _{MAX}	Maximum allowable current at LO and HO due to external power transistor Miller effect			-500	500	ША
dV _S /dt	Allowable offset voltage slew rate	-50	50	-50	50	V/ns
PD	Max. power dissipation @ TA \leq +25 °C, 8-Pin DIP		1.0		1.0	W
PD	Max. power dissipation @ TA \leq +25 °C, 8-Pin SOIC		0.625		0.625	
Rthja	Thermal resistance, junction to ambient, 8-Pin DIP		125		85	°C/W
Rthja	Thermal resistance, junction to ambient, 8-Pin SOIC		200		128	
TJ	Junction temperature	-55	150	-55	150	
Ts	Storage temperature	-55	150	-55	150	°C
TL	Lead temperature (soldering, 10 seconds)		300		300	

Absolute Maximum Ratings

Comments: All absolute maximum ratings are exactly the same except for the maximum supply current limit and the thermal resistance. The maximum supply current is rated at 20 mA for the new IRS2153(1)D versus 25 mA for the IR2153(1)/IR2153(1)D and is due to the internal zener clamp. A 20 mA maximum versus 25 mA should be a negligible amount for most applications. A lower thermal resistance will give lower temperatures on the package surface.

Recommended Operating Conditions

	Parameter	IR2153(1)/I	R2153(1)D	IRS2153(Units	
Symbol	Definition	min	max	min	max	Units
V_{BS}	High side floating supply voltage	V _{CC} - 0.7	VCLAMP	VCC - 0.7	VCLAMP	
Vs	Steady state high side floating supply offset voltage	-3.0	600	-3.0	600	V
Vcc	Supply voltage	10	VCLAMP	VCCUV+ + 0.1V	VCLAMP	
Icc	Supply current		5		5	mA
TJ	Junction temperature	-40	125	-40	125	°C

Comments: All parameters are mostly the same.

AN-1085

Recommended Component Values

	Parameter		R2153(1)D	IRS2153(Units	
Symbol	Definition	min	max	min	max	Units
R _T	Timing resistor value	1		1		kΩ
CT	C_{T} pin capacitor value	330		330		pF

Comments: All parameters are exactly the same.

Electrical Characteristics

Bootstrap	FET/Diode Characteristics	IR2153(1)/IR2153(1)D			IR	S2153(1)D	Units	Test	
Symbol	Definition	Min	Тур	Max	Min	Тур	Max	Units	Conditions	
V _F	Bootstrap diode forward voltage (IR2153(1)D)	0.5		1.0				V	I _F = 250 mA	
VB_ON	VB when the bootstrap FET is on					13.7		•		
IB_CAP	VB source current when bootstrap FET is on				40	55		mA	CBS=0.1 µF	
IB_10V	VB source current when bootstrap FET is on				10	12			VB=10 V	

Comments: The IRS2153(1)D contains an integrated bootstrap MOSFET that eliminates the need for an external high-voltage bootstrap diode. The integrated bootstrap MOSFET is turned on only during the time when LO is 'high', and has a limited source current due to R_{DSon} . The V_{BS} voltage will determined each cycle by on the on-time of LO, the size of the external MOSFETs and the value of the CBS capacitor. At start-up, several cycles of LO will occur first until V_{BS} increases above V_{BSUV+} (see Floating Supply Characteristics) and then HO will start to oscillate. The maximum operating frequency will be determined by the MOSFET driven by IRS2153(1)D and the value of the CBS capacitor since the bootstrap MOSFET needs to maintain V_{BS} above V_{BSUV-} each cycle. If the frequency is too high, V_{BS} will fall below V_{BSUV-} and the HO output will turn off. To avoid this problem, an external high-voltage bootstrap diode can be added in parallel to maintain V_{BS} above V_{BSUV-} during high-frequency applications.

Low Voltage	Low Voltage Supply Characteristics		(1)/IR21	53(1)D	IF	RS2153(1)D	Units	Test
Symbol	Definition	Min	Тур	Max	Min	Тур	Max	Units	Conditions
V _{CCUV+}	Rising V_{cc} undervoltage lockout threshold	8.1	9.0	8.1	10.0	11.0	12.0		
V _{CCUV} -	Falling V_{CC} undervoltage lockout threshold	7.2	8.0	7.2	8.0	9.0	10.0	V	
V _{CCUVHYS}	V_{CC} undervoltage lockout hysteresis	0.5	1.0	0.5	1.6	2.0	2.4		
I _{QCCUV}	Micropower startup V_{cc} supply current		75	150		130	170		$V_{CC} \leq V_{CCUV}$
lacc	Quiescent V _{CC} supply current		500	950		800	1000	μA	
Icc	V _{cc} supply current					1.8		mA	R _T =36.9 kΩ
V _{CLAMP}	V _{cc} zener clamp voltage	14.4	15.6	16.8	14.4	15.4	16.8	V	I _{cc} = 5 mA

Comments: No major changes other than V_{CCUV+} and V_{CCUV-} being higher, as well as the hysteresis. The higher UVLO thresholds should not impact the application since typically V_{CC} is regulated against its internal 15.4 V clamp voltage. The increased hysteresis should make the application more robust and prevent the IC from turning off momentarily should transient dips in the V_{CC} voltage occur.

Floating S	upply Characteristics	naracteristics IR2153(1)/IR2153(1)D IRS2153(1)D)D	Units	Test	
Symbol	Definition	Min	Тур	Max	Min	Тур	Max	Units	Conditions
I _{QBS}	Quiescent V_{BS} supply current		30	50		60	80	μA	
V _{BSUV+}	$V_{\mbox{\scriptsize BS}}$ supply undervoltage positive going threshold				8.0	9.0	9.5	V	
V _{BSUV-}	$V_{\mbox{\scriptsize BS}}$ supply undervoltage negative going threshold				7.0	8.0	9.0	v	
I _{QBSUV-}	Micropower startup V_{BS} supply current		0	10				μA	$V_{CC} \le V_{CCUV-,}$ $V_{CC} = V_{BS}$
V _{BSMIN}	Minimum required V_{BS} voltage for proper functionality from R_{T} to H_{O}		4.0	5.0				V	$V_{CC} = V_{CCUV} + 0.1 V$
Ilk	Offset supply leakage current			50			50	μA	V _B = V _S = 600 V

Comments: The new IRS2153(1)D contains an under-voltage lockout circuit. This is necessary because of the additional integrated bootstrap MOSFET. The UVLO circuit will guarantee that V_{BS} is high enough before turning on H_O and will protect the external MOSFET from being driven in the linear region should V_{BS} decrease too much.

Oscillator	/O Characteristics	IR215	3(1)/IR21	53(1)D	IR	S2153(1)D	Units	Test Conditions
Symbol	Definition	Min	Тур	Мах	Min	Тур	Мах	Units	Test Conditions
f	Oppillator fraguency	19.4	20	20.6	18.4	19.0	19.6	kHz	R _T = 36.9/36.5 kΩ
f osc	Oscillator frequency	94	100	106	88	93	100	KI	R _T = 7.43/7.15 kΩ
d	R_T pin duty cycle	48	50	52		50		%	f _o < 100 kHz
Ict	C⊤ pin current		0.001	1.0		0.02	1.0	μA	
I _{CTUV}	UV-mode C_T pin pulldown current	0.30	0.70	1.2	0.2	0.3	0.6	mA	V_{CC} = 7 V
V _{CT+}	Upper C_T ramp voltage threshold		8.0			9.32			
V _{CT-}	Lower C_T ramp voltage threshold		4.0			4.66		V	
V _{CTSD}	C_{T} voltage shutdown threshold	1.8	2.1	2.4	2.2	2.3	2.4		
V _{RT+}	High-level R_T output voltage, V_{CC} - V_{RT}		10	50		10	50		I _{RT} = -100 μA
VRT+			100	300		100	300		I _{RT} = -1 mA
V _{RT-}	Low-level R _T output voltage		10	50		10	50		I _{RT} = 100 μA
VRI-	Low-level N1 output voltage		100	300		100	300		I _{RT} = 1 mA
V _{RTUV}	UV-mode R_T output voltage		0	100		0	100	mV	$V_{CC} \leq V_{CCUV}$
			10	50		10	50		I _{RT} = -100 μA, V _{CT} = 0 V
V _{RTSD}	SD-mode R _T output voltage, V _{CC} - V _{RT}		100	300		100	300		I _{RT} = -1 mA, V _{CT} = 0 V

Comments: The new IRS2153(1)D should fit into an existing design and maintain existing performance without any changes to the design with the exception of R_T/C_T value.

AN-1085

Gate Drive	r Output Characteristics		IR215	3(1)/IR2	153(1)D	IF	RS2153(1)	D	Units	Test	
Symbol	Definition		Min	Тур	Мах	Min	Тур	Мах	Units	Conditions	
V_{OH}	High level output voltage			0	100		VCC			I ₀ = 0 A	
V _{OL}	Low level output voltage, $V_{\rm O}$			0	100		СОМ		mV	I ₀ = 0 A	
$V_{OL_{UV}}$	UV-mode output voltage, $V_{\rm o}$			0	100		СОМ			$I_{O} = 0 \text{ A},$ $V_{CC} \leq V_{CCUV}$	
tr	Output rise time			80	150		120	220			
t _f	Output fall time			45	100		50	80	ns		
t _{sd}	Shutdown propagation delay			660			350				
t _d	Output deadtime $(H_{o} \text{ or } L_{o})$	2153D 21531D	0.75 0.35	1.20 0.6	1.65 0.85	0.65 0.35	1.10 0.6	1.75 0.85	μs		
I _{O+}	Output source current	•					180		m 4		
I _{O+}	Output sink current						260		mA		

Comments: Output rise and fall times are slightly longer due to a slight decrease in the output source and sink currents Deadtime tolerances had to be slightly downgraded, but should not impact most applications.

3. Conclusions

In most cases, any member for the IR2153(1)/IR2153(1)D family will be easily and advantageously replaced by the new leadfree IRS2153(1)D. The application will benefit a monolithic solution integrating a bootstrap FET, an increased UVLO hysteresis, a possibility of non-latch IC shutdown, better thermal behavior and ROHS compatibility while keeping a 3% tolerance on the frequency.

International **TCR** Rectifier **IR WORLD HEADQUARTERS:** 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 *Data and specifications subject to change without notice.* 7/242006

AN-1085